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The nucleophile addition reactions ofR-methyl benzyl car-
bocations with Lewis bases are fast and are generally perceived
to be thermodynamically favorable processes.2,3 By contrast with
proton-transfer reactions at carbon,4-6 there has been little
consideration of whether these reactions of unstable carbocations
areintrinsically fast, or whether they are fast simply because they
are energetically favorable. This distinction requires a knowledge
of the intrinsic barrier to the reaction in the absence of a
thermodynamic driving force. We report here intrinsic rate
constants of (kMeOH)o ) 1 × 108 M-1 s-1 and (kp)o ) 450 s-1 for
the nucleophilic addition of methanol to the acetophenone
oxocarbenium ion2H+ and deprotonation of2H+ by solvent
water, respectively (Scheme 1). These intrinsic rate constants
correspond to intrinsic barriers ofΛMeOH ) 6.5 kcal/mol andΛp

) 13.8 kcal/mol for the nucleophile addition and proton-transfer
reactions, respectively.

Table 1 summarizes the rate and equilibrium constants for the
formation and reaction of1, 1H+, 2, and2H+ in water at 25°C
(Scheme 1). The literature values7,8 of kMeOH ) 3 × 106 M-1 s-1

and kH ) 1600 M-1 s-1 give Kadd ) 1900 for the addition of
methanol to2H+ to give 1. The value of pKa ) -6.2 for
protonated acetophenone dimethyl ketal1H+ was estimated
starting from pKa ) -2.52 for protonated dimethyl ether.9 The
equilibrium constant for the addition of methanol to2H+ to give
1H+ can then be calculated as (Kadd)H ) Kadd/Ka ) 0.0012 M-1

(Scheme 1). The first-order rate constant for the cleavage of1H+

to give the oxocarbenium ion2H+ can be calculated asksolv )
kHKa ) 2.5 × 109 s-1. This is smaller than the rate constant of
∼1010 s-1 for the thermodynamically favorable deprotonation of
1H+ by solvent water to regenerate1,11 so that1 and 1H+ are
essentially at chemical equilibrium during the acid-catalyzed
cleavage of1. This is in agreement with the conclusions of earlier
studies that1H+ is an intermediate of the stepwise, specific-acid-
catalyzed hydrolysis of ketals,12 which is the microscopic reverse
of nucleophilic addition of methanol to2H+ to form 1.

The rate constants for protonation ofR-methoxystyrene2 by
hydronium ion and acetic acid in water at 25°C and I ) 1.0
(KCl) were determined by published methods13 as (kH)alk ) 80

M-1 s-1 andkAcOH ) 0.13 M-1 s-1, respectively. Figure 1 shows
the effect of increasing concentrations of acetate ion on the ratio
of the yields ofR-methoxystyrene2 and acetophenone from the
acid-catalyzed cleavage of acetophenone dimethyl ketal1 in water
at pH 7.0 (10 mM phosphate buffer) at 25°C andI ) 1.0 (KCl).14

The data were fit to eq 1 to givekAcO/kHOH ) 0.0034 M-1 for
partitioning of2H+ between deprotonation by acetate ion to give
2 and nucleophilic addition of solvent water to give, ultimately,
acetophenone.15 This partitioning ratio can be combined with the
value of 5× 107 s-1 for kHOH,7 to givekAcO ) 1.7× 105 M-1 s-1

as the absolute rate constant for deprotonation of2H+ by acetate
ion. The acidity of the oxocarbenium ion2H+ can then be
calculated asKoxo ) (kAcO/kAcOH)(Ka)AcOH ) 33 M, using p(Ka)AcOH

) 4.60 for acetic acid under our experimental conditions. The
relationship Koxo ) kp/(kH)alk then giveskp ) 2600 s-1 for
deprotonation of2H+ by solvent water. The equilibrium constant
for elimination of methanol from1 to give 2 was calculated as
Kalk ) Koxo/Kadd ) 0.018 M (Scheme 1).16
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(15) The derivation of eq 1 assumes that there is no catalysis by acetate
ion of the nucleophilic addition of water to2H+. An increase in the
concentration of acetate ion from 0 to 0.77 M (I ) 1.0, KCl) results in a
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Table 1 shows that, despite the 6 kcal/mol larger thermody-
namic driving force for the deprotonation of2H+ to give2 (∆G°
) -2.1 kcal/mol) than for the nucleophilic addition of methanol
to give 1H+ (∆G° ) 4.0 kcal/mol), there is a 1200-fold larger
rate constant for the latter reaction. The rate and equilibrium
constants for these reactions of2H+ were substituted into the
Marcus equation17 (eq 2, derived at 298 K) to giveΛMeOH ) 6.5
( 0.5 kcal/mol as the intrinsic barrier for the hypothetical
thermoneutral nucleophilic addition of methanol to2H+, andΛp

) 13.8( 0.1 kcal/mol as the intrinsic barrier for the hypothetical
thermoneutral deprotonation of2H+ by solvent water. These
intrinsic barriers correspond to intrinsic rate constants of (kMeOH)o

) (1.1 ( 0.9)× 108 M-1 s-1 and (kp)o ) 450( 60 s-1 (eq 3).18

The value of (kMeOH)o for addition of methanol to2H+ is larger
thanko ) 1 × 107 M-1 s-1 for thermoneutral protonation of the
dicyanomethyl carbanion by secondary amines, a prototypicalfast
proton transfer at carbon,4 and only∼60-fold smaller thankd ≈

(5-7) × 109 M-1 s-1 for the diffusion-limited reactions of
carbocations.19 We conclude that the thermoneutral nucleophilic
addition of methanol to the oxocarbenium ion2H+ is an
intrinsically fast reaction. By contrast, the deprotonation of2H+

by solvent water through transition state4 is a much slower
process.

A qualitative explanation for the existence of a significant
intrinsic barrier for carbocation-nucleophile combination reac-
tions such as the addition of methanol to2H+, is that the
stabilization of the transition state3 due to the developing C-O
bond issmaller than the opposing increase in energy from the
loss of stabilizing electron donation from theR-oxygen and
R-phenyl groups to the benzylic carbon.2 The falloff in stabilizing
electron donation to the benzylic carbon of carbocations such as
2H+ on proceeding to the transition state3 may be relatively large
because2,3,20 (a) there is a fractional loss of stabilization from
electron donation that is roughly equal to the fraction of C-O
bond formation at3; and (b) stabilization of the carbocation from
π-overlap withR-substituents is further reduced by the movement
away from a planar geometry at the partlysp3-hybridized benzylic
carbon of3.20,21 Whatever the explanation for the magnitude of
ΛMeOH ) 6.5 kcal/mol, this experimental intrinsic barrier for the
addition of methanol to2H+ will serve as a benchmark against
which to test developing theoretical work to model these intrinsic
barriers.
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Table 1. Rate and Equilibrium Constants for the Formation and Reaction of1, 1H+, 2 and2H+ in Water (Scheme 1)a

reaction equilibrium constant rate constants

1 y\z
Kalk/[MeOH]

2 Kalk ) 0.018 Mb

1H+ y\z
Ka/[H+]

1 Ka ) 1.6× 106 Mc

2H+ y\z
Koxo/[H+]

2 Koxo ) 33 Md kp ) 2600 s-1 e

(kH)alk ) 80 M-1 s-1

2H+ y\z
Kadd[MeOH]/[H+]

1 Kadd) 1900f kMeOH ) 3 × 106 M-1 s-1 g

kH ) 1600 M-1 s-1 h

2H+ y\z
(Kadd)H[MeOH]

1H+ (Kadd)H ) 0.0012 M-1 i kMeOH ) 3 × 106 M-1 s-1 g

ksolv ) 2.5× 109 s-1 j

a At 25 °C andI ) 1.0 (KCl), unless noted otherwise. A discussion of the uncertainties and standard errors in the rate and equilibrium constants
reported in this table is given in the Supporting Information.b Calculated asKalk ) Koxo/Kadd. c Estimated from pKa ) -2.52 for dimethyl ether, as
described in ref 9.d Calculated asKoxo ) (kAcO/kAcOH)(Ka)AcOH, see text.e Calculated askp ) Koxo(kH)alk ) (kAcO/kAcOH)(Ka)AcOH(kH)alk. f Calculated as
Kadd ) kMeOH/kH. g Data from ref 7.h Data from ref 8.i Calculated as (Kadd)H ) Kadd/Ka. j Calculated asksolv ) kHKa.

Figure 1. The effect of increasing concentrations of acetate ion on the
ratio of the yields ofR-methoxystyrene and acetophenone, [2]/[acetophe-
none], from the acid-catalyzed cleavage of acetophenone dimethyl ketal
1 in water at pH 7.0 (10 mM phosphate buffer) at 25°C and I ) 1.0
(KCl). The solid line shows the least-squares fit of the data to eq 1 of
the text. The slope of this line iskAcO/kHOH ) 0.0034 M-1 for partitioning
of the oxocarbenium ion2H+ between deprotonation by acetate ion and
nucleophilic addition of solvent water.

[2]/[acetophenone])
ko

kHOH
+

kAcO

kHOH
[AcO-] (1)

log k ) 1
1.36{17.44- Λ(1 - 1.36logK

4Λ )2} (2)

log ko ) 12.8- Λ
1.36

(3)
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